🟰Математические основы генеративных нейронных сетей: что нужно знать для их изучения
❔Генеративный ИИ — это тип искусственного интеллекта, который после обучения на огромных массивах существующих данных способен создавать новый контент (текст, программный код, изображения, аудио, видео).
🪅Первыми примитивными примерами генеративного ИИ можно считать статистические модели, которые могли генерировать новые последовательности на основе заданных входных данных. Одна из таких моделей была использована для предсказания итогов президентских выборов в США в 1952 году.
↗️ Стремительное развитие генеративного ИИ началось в 2014 году, когда Ян Гудфеллоу и его коллеги представили генеративную состязательную сеть (GAN). Параллельно с этим, вариационные автокодировщики (VAE) и рекуррентные нейронные сети (RNN) тоже продемонстрировали впечатляющие способности к генерации нового контента. С тех пор генеративный ИИ развивается с головокружительной скоростью.
В новой статье рассказываем, какие разделы математики нужно знать для разработки современных генеративных моделей.
🟰Математические основы генеративных нейронных сетей: что нужно знать для их изучения
❔Генеративный ИИ — это тип искусственного интеллекта, который после обучения на огромных массивах существующих данных способен создавать новый контент (текст, программный код, изображения, аудио, видео).
🪅Первыми примитивными примерами генеративного ИИ можно считать статистические модели, которые могли генерировать новые последовательности на основе заданных входных данных. Одна из таких моделей была использована для предсказания итогов президентских выборов в США в 1952 году.
↗️ Стремительное развитие генеративного ИИ началось в 2014 году, когда Ян Гудфеллоу и его коллеги представили генеративную состязательную сеть (GAN). Параллельно с этим, вариационные автокодировщики (VAE) и рекуррентные нейронные сети (RNN) тоже продемонстрировали впечатляющие способности к генерации нового контента. С тех пор генеративный ИИ развивается с головокружительной скоростью.
В новой статье рассказываем, какие разделы математики нужно знать для разработки современных генеративных моделей.
A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.
Библиотека собеса по Data Science | вопросы с собеседований from us